Left Atrial Appendage (LAA) and Stroke

Kenneth C. Huber, MD, FACC
CEO, Saint Luke's Cardiovascular Consultants
Co-Executive Medical Director, Saint Luke's Mid America Heart Institute
Professor of Medicine, UMKC School of Medicine

Learning Objectives

• At the conclusion of this session, the learner should be able to:
 – Identify the role the Left Atrial Appendage (LAA) plays in stroke risk for patients with Atrial Fibrillation
 – Review data on LAA closure as an alternative to oral anticoagulants for stroke prevention in patients with Atrial Fibrillation
 – Develop strategies to incorporate LAA closure into contemporary clinical practice

Atrial Fibrillation → An Epidemic

Distribution of AF by Age

Over 50% of AF occurs in the 6% of the population ≥ 75 years of age

Savelieva, et al. Circ Cardiovasc 2008;31

LAA and Stroke

• Role of LAA in embolic stroke is in setting of patients with ATRIAL FIBRILLATION (AF)

WATCHMAN Advisory Board – Boston Scientific
WATCHMAN Professional Training Event - Proctor

Disclosure

Kenneth C. Huber, MD, FACC
Atrial Fibrillation → Stroke Risk

- AF increases the risk of stroke 5-fold (5-6% annual risk)
- AF is responsible for 15-20% of all strokes
- 800,000 strokes/yr in U.S. = 100,000 AF strokes/yr

Functional Impact of AF-Related Stroke

CATASTROPHIC

- 50% = Hemiparesis
- 19% = Aphasia
- 26% = Dependent ADL
- 26% = Nursing Homes

Generally occlude large intracranial arteries

Atrial Fibrillation as a Systemic Vascular Disease

- Hypertension
- Obesity
- Sleep Apnea
- Sedentary Lifestyle

Thrombosis/Embolization

- Electrical Fibrillation
- Insufficient contraction of LAA
- Stagnant blood flow
- Thrombosis / clot formation
- Thromboembolism
- Stroke

Left Atrial Appendage Thrombosis
LAA – Culprit
Location of Thrombi in Left Atrium

- LA: mostly smooth and “vein like” derived from sinus venosus
- LAA: derived from the embryonic/primordial muscular atrium

LAA Anatomy: Thrombi Haven

- LA: mostly smooth and “vein like” derived from sinus venosus
- LAA: derived from the embryonic/primordial muscular atrium

LAA Anatomy: Imaging Techniques

- TEE
- CT
- Angio

LAA : Highly Variable Structure

Atrial Fibrillation - Stroke
Risk Assessment
Comparing Risk Scores for the Prediction of Stroke in AF

Why CHA²DS²-VASc²?

- Patient:
 - Female
 - Age 72
 - Diabetes,
 - Vascular Disease
- CHADS² = 1
- CHA²DS²-VASc = 4
- Greater discriminatory ability

Significant Limitations

- c-statistic 0.65
- Incomplete clinical variables
- Biomarkers absent
- Anatomic factors not considered

CHA²DS²-VASc Score for Stroke Prediction in AF: Stroke Rates for All Patients

CHADS²-VASc-R Score

Relative Contribution of Each Risk Factor of CHA²DS²-VASc-R Score in Stroke Prevention

<table>
<thead>
<tr>
<th>Order of Importance</th>
<th>CHADS²-VASc-R Factor</th>
<th>CHI Square</th>
<th>Relative Hazard</th>
<th>CHI Square</th>
<th>Relative Hazard</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>History of Stroke</td>
<td>1,959.99</td>
<td>1.42, p<0.001</td>
<td>1,387.48</td>
<td>1.35, p<0.001</td>
</tr>
<tr>
<td>2</td>
<td>Age ≥ 75 yrs</td>
<td>1,298.73</td>
<td>1.95, p<0.001</td>
<td>906.27</td>
<td>1.77, p<0.001</td>
</tr>
<tr>
<td>2</td>
<td>Female</td>
<td>27.34</td>
<td>1.50, p<0.001</td>
<td>319.98</td>
<td>1.36, p<0.001</td>
</tr>
<tr>
<td>4</td>
<td>African American</td>
<td>323.74</td>
<td>1.60, p<0.001</td>
<td>197.18</td>
<td>1.45, p<0.001</td>
</tr>
<tr>
<td>5</td>
<td>Hypertension</td>
<td>245.87</td>
<td>1.44, p<0.001</td>
<td>23.80</td>
<td>1.13, p<0.001</td>
</tr>
<tr>
<td>6</td>
<td>Heart Failure</td>
<td>227.37</td>
<td>1.27, p<0.001</td>
<td>40.45</td>
<td>1.11, p<0.001</td>
</tr>
<tr>
<td>7</td>
<td>Other vascular disease</td>
<td>173.28</td>
<td>1.23, p<0.001</td>
<td>1.30</td>
<td>1.02, p<0.001</td>
</tr>
<tr>
<td>8</td>
<td>Diabetes</td>
<td>118.63</td>
<td>1.19, p<0.001</td>
<td>40.45</td>
<td>1.11, p<0.001</td>
</tr>
</tbody>
</table>

CHA²DS²-VASc-R = CHF, HTN, age≥75 yrs, CHA, prior stroke, vascular disease, age 65-74, female sex, and African American ethnicity

CV Biomarker Score and Clinical Outcomes in Patients with Afib:
Subanalysis of ENGAGE AF-TIMI 48 Clinical Trial

Biomarker Score: 0-4 5-7 8-11

Biomarkers:
- Troponin I
- NT-proBNP
- D-Dimer

Comparing Risk Scores for the Prediction of Stroke in AF

<table>
<thead>
<tr>
<th>Order of Importance</th>
<th>CHADS²-VASc-R Factor</th>
<th>CHI Square</th>
<th>Relative Hazard</th>
<th>CHI Square</th>
<th>Relative Hazard</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>History of Stroke</td>
<td>1,959.99</td>
<td>1.42, p<0.001</td>
<td>1,387.48</td>
<td>1.35, p<0.001</td>
</tr>
<tr>
<td>2</td>
<td>Age ≥ 75 yrs</td>
<td>1,298.73</td>
<td>1.95, p<0.001</td>
<td>906.27</td>
<td>1.77, p<0.001</td>
</tr>
<tr>
<td>2</td>
<td>Female</td>
<td>27.34</td>
<td>1.50, p<0.001</td>
<td>319.98</td>
<td>1.36, p<0.001</td>
</tr>
<tr>
<td>4</td>
<td>African American</td>
<td>323.74</td>
<td>1.60, p<0.001</td>
<td>197.18</td>
<td>1.45, p<0.001</td>
</tr>
<tr>
<td>5</td>
<td>Hypertension</td>
<td>245.87</td>
<td>1.44, p<0.001</td>
<td>23.80</td>
<td>1.13, p<0.001</td>
</tr>
<tr>
<td>6</td>
<td>Heart Failure</td>
<td>227.37</td>
<td>1.27, p<0.001</td>
<td>40.45</td>
<td>1.11, p<0.001</td>
</tr>
<tr>
<td>7</td>
<td>Other vascular disease</td>
<td>173.28</td>
<td>1.23, p<0.001</td>
<td>1.30</td>
<td>1.02, p<0.001</td>
</tr>
<tr>
<td>8</td>
<td>Diabetes</td>
<td>118.63</td>
<td>1.19, p<0.001</td>
<td>40.45</td>
<td>1.11, p<0.001</td>
</tr>
</tbody>
</table>
Prognostic Value of Low LAA Wall Velocity in Patients with Ischemic Stroke and AF

![Prognostic Value of Low LAA Wall Velocity in Patients with Ischemic Stroke and AF](image)

DiBaise, L, et al. JACC 2012

Stroke Prevalence Based Upon Left Atrial Appendage Morphology

![Stroke Prevalence Based Upon Left Atrial Appendage Morphology](image)

Atrial Fibrillation - Stroke Therapies

![Atrial Fibrillation - Stroke Therapies](image)

Gold Standard Therapy

![Gold Standard Therapy](image)

2014 AHA/ACC/HRS Treatment Guidelines to Prevent Thromboembolism in Patients with HF

- Assess stroke risk with CHA₂DS₂-VASc score
 - Score 1: Annual stroke risk 1%, oral anticoagulants or aspirin **may be considered**
 - Score ≥2: Annual stroke risk 2%-15%, oral anticoagulants are **recommended**
 - Threshold of Benefit > Risk
 - 1.7% / yr for warfarin
 - 0.9% / yr for NOAC

![2014 AHA/ACC/HRS Guidelines for the Management of Patients with AF](image)

Stroke Prevention: Medical Therapy: Oral Anticoagulants Cornerstone of Therapy: Warfarin

![Stroke Prevention: Medical Therapy: Oral Anticoagulants Cornerstone of Therapy: Warfarin](image)

2014 AHA/ACC/HRS Guidelines for the Management of Patients with AF

Warfarin Problematic

Relative/Absolute contraindication in up to 40% of patients

WHY?

- 25% anticoagulants
- 15% Contraindicated

Bleeding

- Cooper Meta-analysis
 - Given:
 - 51 ischemic strokes / 1000 pt-yr follow up
 - Warfarin Rx:
 - Prevents 28 ischemic strokes (55% RR ↓)
 - Expense 11 major/fatal bleeds (21% RR ↑)

Bleeding Risk Assessment

<table>
<thead>
<tr>
<th>Letter</th>
<th>Clinical Characteristic</th>
<th>Points Awarded</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>Hypertension</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>Abnormal renal and liver function (1 point each)</td>
<td>1 or 2</td>
</tr>
<tr>
<td>S</td>
<td>Stroke</td>
<td>1</td>
</tr>
<tr>
<td>R</td>
<td>Bleeding</td>
<td>1</td>
</tr>
<tr>
<td>L</td>
<td>Labile INRs</td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td>Elderly (e.g., age > 65 years)</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>Drugs or Alcohol (1 point each)</td>
<td>1 or 2</td>
</tr>
</tbody>
</table>

Maximum 9 points

Bleeding

- 10,000 A/C-related intracerebral hemorrhages annually in US
- 30-day mortality: 44%
- US Death Certificates 2003, 2006
 - A/C rated first in total mentions of death from drugs causing adverse effects in therapeutic use

NVAF: Odds of Intracranial Hemorrhage & Age in 145 Case-patients (INR 2.0-3.0) and 870 Controls
Bleeding Risk Assessment

- SPORTIF Cohort Bleeding Risk

<table>
<thead>
<tr>
<th>HAS-BLED Score (9)</th>
<th>Major Bleed Events</th>
<th>SPORTIF cohort (n=7,329) %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>0</td>
<td>0.9</td>
</tr>
<tr>
<td>Moderate</td>
<td>1</td>
<td>3.4</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>4.1</td>
</tr>
<tr>
<td>High ≥ 3</td>
<td>3</td>
<td>5.8</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>6.7</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>8.1</td>
</tr>
</tbody>
</table>

- 20% at high risk of bleed ~ 7%/year

“Real World” Bleeding

- Real-life annual risk: 6-8%
- Age > 80: 13%
- OAC + DAPT: 15.7%
- OAC + Clopidogrel: 13.9%

Outcomes According to Triple Therapy vs. DAPT

Net Benefit: Risk / Reward

Fundamental Treatment Dilemma

- Balance difficult → specific patient

<table>
<thead>
<tr>
<th>CHADS2 Score</th>
<th>% Stroke</th>
<th>% Bleed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>0</td>
<td>0.9</td>
</tr>
<tr>
<td>Mod</td>
<td>1</td>
<td>3.4</td>
</tr>
<tr>
<td>High</td>
<td>2</td>
<td>4.1</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>5.8</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>8.9</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>9.1</td>
</tr>
</tbody>
</table>

Significant Undertreatment

- Especially those at high risk

40 to 50% not treated

Low Warfarin Use in High-risk Patients

- Medicare claims data, 2006-2007
 - 27,174 patients
 - Warfarin use less than 60%
Net Clinical Benefit of Warfarin by Age

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>Worse with Warfarin</th>
<th>Better with Warfarin</th>
<th>Events Prevented per 100 Person-Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 65</td>
<td>-0.25</td>
<td>1.00</td>
<td>(0.43 - 0.40)</td>
</tr>
<tr>
<td>65-74</td>
<td>0.11</td>
<td>2.34</td>
<td>(1.29 - 3.30)</td>
</tr>
<tr>
<td>75-84</td>
<td>1.00</td>
<td>2.34</td>
<td>(1.29 - 3.30)</td>
</tr>
<tr>
<td>≥ 85</td>
<td>2.34</td>
<td>-0.25</td>
<td>(0.43 - 0.40)</td>
</tr>
</tbody>
</table>

Relative Prescription Rate of Aspirin (vs OAC) in Patients with CHA2DS2-VASc Score ≥ 2

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>RR (95% CI)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unstable angina</td>
<td>1.19 (1.67 - 2.92)</td>
<td><0.001</td>
</tr>
<tr>
<td>CAP</td>
<td>1.11 (1.61 - 1.90)</td>
<td><0.001</td>
</tr>
<tr>
<td>Stable angina</td>
<td>1.15 (1.11 - 1.26)</td>
<td><0.001</td>
</tr>
<tr>
<td>PAD</td>
<td>1.08 (1.01 - 1.15)</td>
<td><0.001</td>
</tr>
<tr>
<td>Prior CABG</td>
<td>1.07 (1.01 - 1.14)</td>
<td><0.001</td>
</tr>
<tr>
<td>Hypertension</td>
<td>1.07 (1.03 - 1.12)</td>
<td><0.001</td>
</tr>
<tr>
<td>Dyspnoea</td>
<td>1.05 (1.00 - 1.09)</td>
<td><0.001</td>
</tr>
<tr>
<td>Prior MI</td>
<td>1.05 (1.01 - 1.09)</td>
<td><0.001</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>0.96 (0.92 - 0.99)</td>
<td><0.001</td>
</tr>
<tr>
<td>BMI (per 5 kg/m²)</td>
<td>0.94 (0.94 - 0.95)</td>
<td><0.001</td>
</tr>
<tr>
<td>Age (per 10 years)</td>
<td>0.94 (0.93 - 0.95)</td>
<td><0.001</td>
</tr>
<tr>
<td>Male sex</td>
<td>0.93 (0.90 - 0.95)</td>
<td><0.001</td>
</tr>
<tr>
<td>Prior stroke/TIA</td>
<td>0.90 (0.86 - 0.95)</td>
<td><0.001</td>
</tr>
<tr>
<td>CHF</td>
<td>0.81 (0.78 - 0.84)</td>
<td><0.001</td>
</tr>
<tr>
<td>Systemic embolism</td>
<td>0.64 (0.60 - 0.69)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Antithrombotic Therapy in AF: ACTIVE-W Trial

Aspirin + Clopidogrel vs. Warfarin
Cumulative Risk of Stroke

Relative Prescription Rate of Aspirin vs OAC in Patients with CHA2DS2-VASc Score ≥ 2

Apixaban vs. ASA in NVAF: AVERROES

Primary Endpoint: Stroke or Systemic Embolism

New OAC Strategies

- Underused
- Suboptimally applied
- Difficult pharmacology
- Inappropriately discontinued
- Bleeding concerns

Game Changer?

Dabigatran
Rivaroxaban
Apixaban
Edoxaban
Novel Anticoagulants: Overview

<table>
<thead>
<tr>
<th>Mechanism</th>
<th>Dabigatran (Pradaxa)</th>
<th>Rivaroxaban (Xarelto)</th>
<th>Apixaban (Eliquis)</th>
<th>Edoxaban (Lixiana)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct thrombin inhibition</td>
<td>Factor Xa inhibition</td>
<td>Factor Xa inhibition</td>
<td>Factor Xa inhibition</td>
<td>Direct thrombin inhibition</td>
</tr>
<tr>
<td>Dosing: Normal, Low</td>
<td>150mg, 75mg QD</td>
<td>20mg, 15mg QD</td>
<td>5mg, 2.5mg QD</td>
<td>60mg, 30mg QD</td>
</tr>
<tr>
<td>Oral Bioavailability</td>
<td>6.5%</td>
<td>80-100%</td>
<td>66%</td>
<td>62%</td>
</tr>
<tr>
<td>Half-Life (hours)</td>
<td>12-14</td>
<td>7-13</td>
<td>8-13</td>
<td>24</td>
</tr>
<tr>
<td>Involvement of CYP</td>
<td>No</td>
<td>CYP3A4</td>
<td>CYP3A4</td>
<td>CYP3A4</td>
</tr>
<tr>
<td>Potential Drug Interactions</td>
<td>p-Glycoprotein inhibitors</td>
<td>CYP3A4 and p-Glycoprotein inhibitors</td>
<td>CYP3A4 inhibitors</td>
<td>p-Glycoprotein inhibitors</td>
</tr>
</tbody>
</table>

Mechanism:
- Dabigatran (Pradaxa): Direct thrombin inhibition
- Rivaroxaban (Xarelto): Factor Xa inhibition
- Apixaban (Eliquis): Factor Xa inhibition
- Edoxaban (Lixiana): Direct thrombin inhibition

Dosing:
- Dabigatran: 150mg, 75mg BID
- Rivaroxaban: 20mg, 15mg QD
- Apixaban: 5mg, 2.5mg BID
- Edoxaban: 60mg, 30mg QD

Oral Bioavailability:
- Dabigatran: 6.5%
- Rivaroxaban: 80-100%
- Apixaban: 66%
- Edoxaban: 62%

Half-Life:
- Dabigatran: 12-14 hours
- Rivaroxaban: 7-13 hours
- Apixaban: 8-13 hours
- Edoxaban: 24 hours

Involvement of CYP:
- Dabigatran: No CYP involvement
- Rivaroxaban, Apixaban: CYP3A4 involvement
- Edoxaban: ~35% CYP3A4 involvement

Potential Drug Interactions:
- Dabigatran: p-Glycoprotein inhibitors
- Rivaroxaban: CYP3A4 and p-Glycoprotein inhibitors
- Apixaban: CYP3A4 inhibitors
- Edoxaban: p-Glycoprotein inhibitors

Novel Anticoagulants: Trial Comparison

<table>
<thead>
<tr>
<th>Trial</th>
<th>Dabigatran (Pradaxa)</th>
<th>Rivaroxaban (Xarelto)</th>
<th>Apixaban (Eliquis)</th>
<th>Edoxaban (Lixiana)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RE-LY</td>
<td>18,113</td>
<td>14,264</td>
<td>18,201</td>
<td>20,500</td>
</tr>
<tr>
<td>ROCKET-AF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARISTOTLE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGAGE-AF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIMI 48</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

No. of patients:
- Dabigatran: 18,113
- Rivaroxaban: 14,264
- Apixaban: 18,201
- Edoxaban: 20,500

Design:
- RE-LY, open label
- ROCKET-AF, double blind
- ARISTOTLE, double blind
- ENGAGE-AF, double blind
- TIMI 48, double blind

Inclusion criteria:
- Dabigatran: Non-valvular AF, 1 risk factor
- Rivaroxaban: Non-valvular AF, CHADS2 ≥ 2
- Apixaban: Non-valvular AF, 1 risk factor
- Edoxaban: Non-valvular AF, CHADS2 ≥ 2

Age, Female %:
- Dabigatran: 71, 36.4%
- Rivaroxaban: 73, 39.7%
- Apixaban: 70, 35.2%
- Edoxaban: 70, 35.2%

Previous VKA use:
- Dabigatran: 49.6%
- Rivaroxaban: 62.4%
- Apixaban: 57.2%
- Edoxaban: 57.2%

Avg. CHADS2 score:
- Dabigatran: 2.2
- Rivaroxaban: 3.5
- Apixaban: 2.1
- Edoxaban: 2.1

Persistent/Permanent AF:
- Dabigatran: 66.6%
- Rivaroxaban: 80.9%
- Apixaban: 84.7%
- Edoxaban: 84.7%

Follow-up:
- Dabigatran: Event driven, >12 months
- Rivaroxaban: Event driven, >14 months
- Apixaban: Event driven, >12 months
- Edoxaban: 24 months

Primary Outcome:
- Stroke/systemic embolism

Secondary outcomes:
- MI, PE, Mort (CV & Tot)
- MI, Vasc mort, TIA, Total mort
- Total mortality, major bleeding
- Total mortality, major bleeding

High Dose NOACs vs. Warfarin for AF

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Median F/U</th>
<th>Event Rate NOAC</th>
<th>Event Rate Warfarin</th>
<th>RR (95% CI)</th>
<th>ARR/ARI</th>
<th>NNT/NNH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stroke/Systemic Embolism</td>
<td>2.2</td>
<td>3.11%</td>
<td>3.79%</td>
<td>0.81 (0.73-0.91)</td>
<td>0.68%</td>
<td>147</td>
</tr>
<tr>
<td>Hemorrhagic Stroke</td>
<td>2.2</td>
<td>0.44%</td>
<td>0.90%</td>
<td>0.49 (0.38-0.64)</td>
<td>0.46%</td>
<td>210</td>
</tr>
<tr>
<td>Major Bleeding</td>
<td>2.2</td>
<td>5.26%</td>
<td>6.17%</td>
<td>0.86 (0.73-1.00)</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Intracranial Hemorrhage</td>
<td>2.2</td>
<td>0.70%</td>
<td>1.45%</td>
<td>0.48 (0.39-0.59)</td>
<td>0.76%</td>
<td>132</td>
</tr>
<tr>
<td>Gastrointestinal Bleeding</td>
<td>2.2</td>
<td>2.56%</td>
<td>2.02%</td>
<td>1.25 (1.01-1.55)</td>
<td>0.54%</td>
<td>-185</td>
</tr>
<tr>
<td>All-Cause Mortality</td>
<td>2.2</td>
<td>6.90%</td>
<td>7.68%</td>
<td>0.90 (0.81-0.95)</td>
<td>0.78%</td>
<td>128</td>
</tr>
</tbody>
</table>

Preventing Stroke in Non-Valvular AF

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Median F/U</th>
<th>Event Rate NOAC</th>
<th>Event Rate Warfarin</th>
<th>RR (95% CI)</th>
<th>ARR/ARI</th>
<th>NNT/NNH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stroke/Systemic Embolism</td>
<td>2.2</td>
<td>3.11%</td>
<td>3.79%</td>
<td>0.81 (0.73-0.91)</td>
<td>0.68%</td>
<td>147</td>
</tr>
<tr>
<td>Hemorrhagic Stroke</td>
<td>2.2</td>
<td>0.44%</td>
<td>0.90%</td>
<td>0.49 (0.38-0.64)</td>
<td>0.46%</td>
<td>210</td>
</tr>
<tr>
<td>Major Bleeding</td>
<td>2.2</td>
<td>5.26%</td>
<td>6.17%</td>
<td>0.86 (0.73-1.00)</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Intracranial Hemorrhage</td>
<td>2.2</td>
<td>0.70%</td>
<td>1.45%</td>
<td>0.48 (0.39-0.59)</td>
<td>0.76%</td>
<td>132</td>
</tr>
<tr>
<td>Gastrointestinal Bleeding</td>
<td>2.2</td>
<td>2.56%</td>
<td>2.02%</td>
<td>1.25 (1.01-1.55)</td>
<td>0.54%</td>
<td>-185</td>
</tr>
<tr>
<td>All-Cause Mortality</td>
<td>2.2</td>
<td>6.90%</td>
<td>7.68%</td>
<td>0.90 (0.81-0.95)</td>
<td>0.78%</td>
<td>128</td>
</tr>
</tbody>
</table>

Advantages/Disadvantages of Novel Anticoagulants

Advantages
- No need for monitoring level of anticoagulation
- Fewer drug-drug interactions
- Decreased adverse outcomes compared to warfarin
- Short onset of action - no need for heparin bridging

Disadvantages
- Unable to verify compliance
- No specific approved antidote to reverse anticoagulation
- Cost
- Complex dosing schedule
- Unable to use in valvular AF, prosthetic valves, existing thrombus, dialysis patients

The Optimal OAC for Stroke Prevention in AF: Suggestions for Treatment Options
Atrial Fibrillation – Stroke
Non-Pharmacologic Treatment

NOAC Availability Increases Appropriate Use of Anticoagulants for Nonvalvular AF in Clinical Practice

Use of OACs in Patients with NVAF and CHADS₂ score ≥1

<table>
<thead>
<tr>
<th>Year</th>
<th>NOAC & Warfarin</th>
<th>NOAC Only</th>
<th>Warfarin Only</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007-2008</td>
<td>30%</td>
<td>25%</td>
<td>20%</td>
</tr>
<tr>
<td>2009-2010</td>
<td>35%</td>
<td>30%</td>
<td>25%</td>
</tr>
<tr>
<td>2011-2012</td>
<td>40%</td>
<td>35%</td>
<td>30%</td>
</tr>
<tr>
<td>2013-2014</td>
<td>45%</td>
<td>40%</td>
<td>35%</td>
</tr>
</tbody>
</table>

P<0.0001

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Study Drug Discontinuation Rate</th>
<th>Major Bleeding (rate/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rivaroxaban</td>
<td>24%</td>
<td>3.6%</td>
</tr>
<tr>
<td>Apixaban</td>
<td>25%</td>
<td>2.1%</td>
</tr>
<tr>
<td>Dabigatran (150 mg)</td>
<td>21%</td>
<td>3.3%</td>
</tr>
<tr>
<td>Edoxaban (60mg/30mg)</td>
<td>33% / 34%</td>
<td>2.8% / 1.6%</td>
</tr>
<tr>
<td>Warfarin</td>
<td>17-28%</td>
<td>3.1-3.6%</td>
</tr>
</tbody>
</table>

There is an unmet need of stroke risk reduction for patients with AF who are seeking an alternative to long-term OACs

Strokes Treatment Option:
Novel Oral Anticoagulants (NOACs)

Non-pharmacologic Treatments

Transcatheter LAA Closure
- Watchman
- Amplatzer Plug
- Coherex WaveCrest

Ligation
- Surgical
 - Excision/suture
 - Suture
 - Staples/Clip
- Non-surgical
 - Lariat

LAA Ligation: Open Surgical Approach
- Surgical approaches to thromboembolic prophylaxis have been explored since the 1940s
- LAA closure or obliteration has most often been considered as an adjunct to other cardiac procedures such as mitral valveotomy or CABG
- Studies on patients undergoing LAA closure have shown a trend toward reduction in embolic events — no definite data as standalone

Method of Successful LAA Closure

- Excision: 25%
- Ligation w/ Sutures: 33%
- Ligation w/ Staples: 10%

A review of the literature on LAA closure prior to 2010 found closure rates of 10%-73%

LAOS III target enrollment 4,700

LAA Closure Devices
Watchman® LAA Closure

Frame:
- Nitinol structure
- Available sizes:
 - 21, 24, 27, 30, 33 mm (diam.)
 - 10 fixation anchors around device perimeter engage LAA tissue
 - Contour shape accommodates most LAA anatomy

Fabric Cap:
- PET Fabric
- Designed to prevent harmful emboli from exiting during the healing process
- 160 micron filter

WATCHMAN® LAA Closure System

WATCHMAN Access System

- Double or Single Curve styles
- 14F O.D. (4.7 mm), 12F I.D.
- 75 cm working length

Examples

WATCHMAN Implant:
Healing Process

- Canine Model – 45 days
- Human Pathology – 9 months

WATCHMAN LAA Closure System Implanted Device

Frame:
- Nitinol structure
- Available sizes:
 - 21, 24, 27, 30, 33 mm (diam.)
 - 10 fixation anchors around device perimeter engage LAA tissue
 - Contour shape accommodates most LAA anatomy

Fabric Cap:
- PET Fabric
- Designed to prevent harmful emboli from exiting during the healing process
- 160 micron filter

WATCHMAN® LAA Closure System

WATCHMAN Access System

- Double or Single Curve styles
- 14F O.D. (4.7 mm), 12F I.D.
- 75 cm working length

Examples

WATCHMAN Implant:
Healing Process

- Canine Model – 45 days
- Human Pathology – 9 months
WATCHMAN: Clinical and Regulatory Timeline

- PROTECT AF 2005
- Registry CAP 2 2006
- PREVAIL 2008
- Registry CAP 2 2010
- FDA Approval 2015
- FDA PANEL 1 4/09
- FDA PANEL 2 12/13
- FDA PANEL 3 10/14
- CAP Registry 2008
- ASAP 2009
- CAP 2 Registry 2012
- CAP2 Registry 2015
- 21st Century Cures Act Approval 2016

WATCHMAN Clinical Studies

<table>
<thead>
<tr>
<th></th>
<th>PROTECT AF</th>
<th>CAP Registry</th>
<th>PREVAIL</th>
<th>CAP2 Registry</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enrolled</td>
<td>800</td>
<td>566</td>
<td>461</td>
<td>579</td>
<td>2406</td>
</tr>
<tr>
<td>Randomized</td>
<td>707</td>
<td>407</td>
<td>407</td>
<td></td>
<td>1114</td>
</tr>
<tr>
<td>WATCHMAN: Warfarin (2:1)</td>
<td>463 : 244</td>
<td>566</td>
<td>269:138</td>
<td>579</td>
<td>1877:382</td>
</tr>
<tr>
<td>Mean Follow-up (years)</td>
<td>4.0</td>
<td>3.7</td>
<td>2.2</td>
<td>0.58</td>
<td>N/A</td>
</tr>
<tr>
<td>Patient-years</td>
<td>2717</td>
<td>2022</td>
<td>860</td>
<td>332</td>
<td>5931</td>
</tr>
</tbody>
</table>

Patient Demographics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>PROTECT AF (n=707)</th>
<th>CAP (n=556)</th>
<th>PREVAIL (n=407)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, mean ± SD</td>
<td>72.0 ± 8.9</td>
<td>74.0 ± 8.3</td>
<td>74.3 ± 7.4</td>
</tr>
<tr>
<td>Age, range</td>
<td>41-95</td>
<td>44-94</td>
<td>50-94</td>
</tr>
<tr>
<td>Sex (Male)</td>
<td>70.3%</td>
<td>65.5%</td>
<td>70.0%</td>
</tr>
<tr>
<td>Ethnicity/Race</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asian</td>
<td>0.7%</td>
<td>1.6%</td>
<td>0.5%</td>
</tr>
<tr>
<td>Black</td>
<td>1.6%</td>
<td>1.9%</td>
<td>1.7%</td>
</tr>
<tr>
<td>Caucasian</td>
<td>91.5%</td>
<td>91.9%</td>
<td>94.4%</td>
</tr>
<tr>
<td>Hispanic/Latino</td>
<td>5.7%</td>
<td>3.5%</td>
<td>2.7%</td>
</tr>
<tr>
<td>Other</td>
<td>0.6%</td>
<td>1.1%</td>
<td>0.7%</td>
</tr>
</tbody>
</table>

Majority of Patients at High Stroke Risk, All Eligible for Anti-coagulation

- Anticoagulation Eligible
- Majority of Patients at High Risk
- CHA₂DS₂-VASc Score ≥2
- 93% 96% 100%
Majority of Patients in the Trial were at Moderate to High Bleeding Risk

1. Estimated HAS BLED score. Labile INR and liver function were not included and given a score of zero.

Source: Holmes DR, et al. JACC 2015;

Warfarin Time in Therapeutic Range (TTR) for Control Groups

<table>
<thead>
<tr>
<th>Study</th>
<th>Warfarin Control Group Mean TTR</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROTECT AF</td>
<td>70%</td>
</tr>
<tr>
<td>PREVAIL</td>
<td>68%</td>
</tr>
<tr>
<td>RE-LY2 (Dabigatran)</td>
<td>64%</td>
</tr>
<tr>
<td>ARISTOTLE2 (Apixaban)</td>
<td>62%</td>
</tr>
<tr>
<td>ROCKET AF3 (Rivaroxaban)</td>
<td>55%</td>
</tr>
</tbody>
</table>

Endpoints

Efficacy Events
- Stroke (ischemic)
- Systemic Embolism
- CV / Unexplained Death

Safety Events
- Stroke (hemorrhagic)
- Stroke (procedure related)
- Both Efficacy & Safety
- Device Embolization
- Major Bleeding Events
- Pericardial Effusions

“Primary effectiveness endpoint captures the events that would also be considered significant safety events (i.e., stroke, death and systemic embolism)”

FDA Executive Summary

Favorable Procedural Safety Profile:

7-Day Safety Events

- Learning Curve: 9.9%
- 1st Half: 4.8%
- 2nd Half: 4.1%
- CAP: 4.1%
- PREVAIL: 4.1%
- CAP2: 3.8%

All Device and/or procedure-related serious adverse events within 7 Days

Key Procedural Safety Events

PROTECT AF vs. CAP/PREVAIL

- **Overall embolization rate across studies is 0.5%**

WATCHMAN Clinical Trial

Efficacy

PROTECT AF: Final Primary Efficacy Events Favor WATCHMAN

<table>
<thead>
<tr>
<th>Event Rate (per 100 pt-yrs)</th>
<th>Rate Ratio</th>
<th>Non-inferiority</th>
<th>Superiority</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Efficacy</td>
<td>2.3</td>
<td>3.7</td>
<td>0.61</td>
</tr>
<tr>
<td>Stroke (all)</td>
<td>1.5</td>
<td>2.2</td>
<td>0.68</td>
</tr>
<tr>
<td>Ischemic</td>
<td>1.3</td>
<td>1.1</td>
<td>1.2</td>
</tr>
<tr>
<td>Hemorrhagic</td>
<td>0.2</td>
<td>1.1</td>
<td>0.15</td>
</tr>
<tr>
<td>Systemic Embolism</td>
<td>0.2</td>
<td>0.0</td>
<td>NA</td>
</tr>
<tr>
<td>Death (CV & Unexplained)</td>
<td>1.0</td>
<td>2.3</td>
<td>0.4</td>
</tr>
</tbody>
</table>

PROTECT AF: 5 Year Mortality

WATCHMAN vs. Warfarin

- **Cardiovascular mortality**
 - HR 0.75% CI: 0.40 (0.21-0.75) *p=0.005
 - RRR 60%

- **All-cause mortality**
 - HR 75% CI: 0.66 (0.45-0.98) *p=0.04
 - RRR 34%

All Cause Mortality Relative Reduction (vs warfarin) In Context

- **RRR 14%**
- **RRR 34%**
Meta-Analysis Shows Comparable Primary Efficacy Results to Warfarin

<table>
<thead>
<tr>
<th>Efficacy</th>
<th>HR</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>All stroke or SE</td>
<td>0.79</td>
<td>0.22</td>
</tr>
<tr>
<td>Ischemic stroke or SE</td>
<td>1.04</td>
<td>0.94</td>
</tr>
<tr>
<td>Hemorrhagic stroke</td>
<td>1.95</td>
<td>0.06</td>
</tr>
<tr>
<td>Ischemic stroke or > 7 days</td>
<td>0.22</td>
<td>0.004</td>
</tr>
<tr>
<td>CV/unexplained death</td>
<td>1.36</td>
<td>0.21</td>
</tr>
</tbody>
</table>

Holmes, SR et al. JACC 2015

Stroke Severity in PROTECT AF/PREVAIL

Non-Disabling Stroke vs. Disabling/Fatal Stroke

<table>
<thead>
<tr>
<th></th>
<th>Warfarin</th>
<th>WATCHMAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>HR</td>
<td>0.73</td>
<td>0.73</td>
</tr>
<tr>
<td>p-value</td>
<td>0.73</td>
<td>0.73</td>
</tr>
</tbody>
</table>

Holmes, SR et al. JACC 2015

PROTECT AF & PREVAIL Meta-analysis:

WATCHMAN Strokes Are Less Disabling

<table>
<thead>
<tr>
<th></th>
<th>WATCHMAN</th>
<th>Warfarin</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Strokes</td>
<td>27%</td>
<td>61%</td>
<td>0.009</td>
</tr>
<tr>
<td>Ischemic Only Strokes</td>
<td>19%</td>
<td>33%</td>
<td>0.43</td>
</tr>
</tbody>
</table>

Based on stroke with MRS change of 2 or more or cause of death related to stroke

Stroke Severity in LAAC vs NOAC Trials

Non-Disabling vs. Disabling Fatal Strokes

PROTECT AF: Quality of Life

Change in SF-12 Scale Scores (Baseline to 12 Months)

<table>
<thead>
<tr>
<th></th>
<th>Control (n=186)</th>
<th>WATCHMAN (n=361)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical Health</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mental Health</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*p<0.005

Price, MJ. Avoidance of Major Bleeding with WATCHMAN Left Atrial Appendage Closure Compared with Long-Term Oral Anticoagulation: Results from the PROTECT AF and PREVAIL RCTs. TCT 2014 (abstract)

V.Reddy et al, manuscript in preparation

V.Reddy et al, FDA Panel Presentation, October 2014
Economic Analysis: Cost Effectiveness

WATCHMAN vs. NOACs vs Warfarin

- Patient level Markov micro-simulation decision analytic model
- Assess Time-to-Cost Effectiveness (not just Lifetime horizon – 20 yrs)
- Economic costs from the US perspective, and costs in 2015, US$
 - For LAAC procedure, we used the newest DRG 273/274 (effective Oct 2015)
- Longest WATCHMAN follow up: PROTECT AF data (6 yrs f/u)
- NOAC meta-analysis of all 4 NOACs (Ruff et al. Lancet 2014;383:955)
- Incorporated costs based on the level of disability resulting from strokes

Time to Cost Effectiveness (Cost/QALY)

- Year 7 ($42,994/QALY)
- Year 10

Time to Dominance (More Effective, Less Costly)

- Year 5 (Dominant)

Device-related Thrombus

<table>
<thead>
<tr>
<th></th>
<th>PROTECT AF (n=408)</th>
<th>CAP (n=534)</th>
<th>PREVAIL (n=252)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thrombus subjects</td>
<td>16 (3.9%)</td>
<td>13 (2.4%)</td>
<td>12 (4.8%)</td>
</tr>
<tr>
<td>Thrombus events</td>
<td>16</td>
<td>18</td>
<td>13</td>
</tr>
<tr>
<td>Experienced ischemic stroke</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Experienced serious adverse event</td>
<td>3</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Annual Device thrombus related stroke rate (per 100 pt-yrs)</td>
<td>0.11</td>
<td>0.07</td>
<td>0.0</td>
</tr>
</tbody>
</table>

EWOLUTION WATCHMAN Registry

- 1,025 patients
- CHD2DS2-VASc ≥ 5: 50%
- 72% “Unsuitable” for warfarin
- Procedural success 98.5%
 - Stroke: 0.4%
 - Embolization: 0.4%
 - Tamponade: 0.7%
- Post-implant anticoagulation regimen
 - DAPT 607; WAR 159; NOAC 113; Nothing 67
- 0.5% had device related serious adverse events not resolved at 3 months

Saint Luke’s

MID AMERICA HEART INSTITUTE
ASAP Registry

Contraindicated Pts (n=150): WATCHMAN → ASA/Clop x 6 mo

- CHADS2 = 2.8 ± 1.2
- Prior CVA/TIA in 41%
- Follow up: 16.5 months

- Expected, based on CHADS2 Score
- Observed Rate in ASAP

\[\text{CHADS2} = 2.8 \pm 1.2 \]

\[\text{Prior CVA/TIA in 41\%} \]

\[\text{Follow up: 16.5 months} \]

WATCHMAN™ Device Reduces Ischemic Stroke Over No Therapy

- PROTECT AF
- PREVAIL Only
- CAP

- Imputed Ischemic Stroke Rate* = 79%
- Observed WATCHMAN Ischemic Stroke Rate = 73%

\[\text{Imputed Ischemic Stroke Rate}^* = 79\% \]

\[\text{Observed WATCHMAN Ischemic Stroke Rate} = 73\% \]

Preventing Stroke in Non-Valvular AF

Imputed Benefit of Different Strategies (vs. Control)

- Warfarin
- Dabigatran-150
- Dabigatran-110
- Rivaroxaban
- Apixaban
- Edoxaban-40
- Edoxaban-30

- PROTECT/ PREVAIL

\[\text{Imputed Benefit of Different Strategies (vs. Control)} \]

Strategies to Incorporate LAA Closure into Clinical Practice
WATCHMAN Device Patient Selection

Indications for Use
The WATCHMAN Device is indicated to reduce the risk of thromboembolism from the left atrial appendage in patients with non-valvular atrial fibrillation who:

* Have an appropriate rationale to seek a non-pharmacologic alternative to warfarin, taking into account the safety and effectiveness of the device compared to warfarin.

NOT a broad replacement for oral anticoagulation

CMS “Conditions”

- Eligible patients must have CHADS\(_2\) score ≥2 or CHA\(_2\)DS\(_2\)-VASC score ≥3
- There must be documented evidence of a formal shared decision interaction between patients and an independent, non-interventional physician
- Patients must be suitable for short-term warfarin, but deemed unable to take long-term OAC

Frequently Asked Questions About CMS “Conditions”

- Who is this “independent, non-interventional physician” involved in this shared decision process?
- What is this “evidence-based decision tool” that is to be used in the formal shared decision making interaction with the patient?
- What is the prospective national registry that we need to enroll our patients into?

Clinical Scenarios: Potential Candidates

- **CHA2DS2-VASC ≥ 3** AND Deemed unable to take long term OAC
- **History of Major Bleeding: on OAC**
 - GI/GU
 - Intracranial
 - ENT
- **High risk for major bleeding: Not on OAC**
 - HAS-BLED ≥ 3 (6% risk/yr)
 - Frailty/Fall Risk
 - CKD, Liver disease
 - Inflammatory Bowel Disease
 - Malignancy (Chemotherapy)
 - Seizure disorder
Clinical Scenarios: Potential Candidates

- Non-adherence/Non-compliance
 - Frailty/Dementia
 - Cost
 - Choice/Refusal
- Polypharmacy
 - Triple therapy – ACS/Vascular disease
- Occupation/Lifestyle
 - High risk of trauma

Clinical Scenarios: Not Candidates

- CHA2DS2-VASc 0, 1, or 2 (for Medicare pts)
- No issues with OAC
- Other reason to be on OAC
 - Valvular AF/Prosthetic valve
 - DVT
 - Hypercoagulable state
- LAA anatomy
 - Size/shape
 - Thrombus/sludge
- Vascular access issues
- Anesthesia risks

Clinical Scenarios: Contraindications

- **Absolute** contraindication to OAC or DAPT
 - Post Implant: 6 weeks OAC
 6 months DAPT
 - Time for endothelialization

 ASAP TOO Trial
 - WATCHMAN (DAPT x 3 mo, ASA x 12 mo)
 - Medical Therapy (no Tx, ASA alone, DAPT can be considered)
 - 2:1 randomization

MAHI Shared Clinical Decision Process

- **Goal:** Educate patient and family on the risks vs benefits of the three different scenarios

Shared Clinical Decision Process

1. Discuss personal risk of stroke
 - CHA2DS2-VASC score: % risk/year
2. Discuss benefits of 3 treatment options
 - RRR \downarrow60-70% (Class IA)
 - Non-inferior/imputed placebo (\downarrow70%)
3. Discuss Personalized relative risks of OAC; both warfarin & NOACS
 - Quantify if possible (HAS-BLED) variable threshold
 - Individual assessment of risk/benefit centered around pharmacotherapy issues
4. Discuss the risks of procedure
 - Risks (procedural/device embolization/device related thrombosis)
WATCHMAN Comparable to Warfarin for Primary Efficacy

- Cardiovascular / Unexplained Death (includes CV deaths preceded by stroke)
- Non-fatal Ischemic Stroke / Systemic Embolism
- Non-fatal Hemorrhagic Stroke
- Event-free

WATCHMAN vs. Warfarin

N=1000; Each circle represents a single patient (N=1) with WATCHMAN or warfarin followed through five years.

CV Death Lower with WATCHMAN vs. Warfarin

- Cardiovascular / Unexplained Death (includes CV deaths preceded by stroke)
- Non-fatal Ischemic Stroke / Systemic Embolism
- Non-fatal Hemorrhagic Stroke
- Event-free

WATCHMAN and Warfarin Reduce Ischemic Stroke vs. No Therapy

- Ischemic Stroke / Systemic Embolism (includes fatal and non-fatal events)
- Free of Ischemic Stroke

Imputed Placebo* (OHADDB - VASc = 3.7)

67 events (75% relative reduction) - 45 events (83% relative reduction) - 270 events (reference)

* Imputed Placebo: Trillas, Eur Heart J (2013)

Hemorrhagic Stroke Lower with WATCHMAN vs. Warfarin

- Cardiovascular / Unexplained Death (includes CV deaths preceded by stroke)
- Non-fatal Ischemic Stroke / Systemic Embolism
- Non-fatal Hemorrhagic Stroke
- Event-free

Zoomed in to show N=500 of 1000 patients for each study arm; each circle represents a single patient (N=1) with WATCHMAN or warfarin followed through five years.

Ischemic Stroke/SE Lower with Warfarin vs. WATCHMAN

N=1000; Each circle represents a single patient (N=1) with WATCHMAN or warfarin followed through five years.

WATCHMAN Performs Better than Warfarin for Major Bleeding

- Major Bleed (related to procedure)
- Event-free
- Major Bleed (unrelated to procedure)

N=1000; Each circle represents a single patient (N=1) with WATCHMAN or warfarin followed through five years.
Conclusions

- The LAA plays a significant role in stroke risk in patients with AF.
- CHA2DS2-VASc score is current goal standard but has significant limitations:
 - Assessment of risk is key to understanding relative benefits of different treatment options.
- Oral anticoagulation is the primary therapy of choice and should be prescribed in virtually all patients:
 - Warfarin is cornerstone but problematic.
 - Is NOAC better but not perfect with major benefit due to decreased ICH; similar for non-cranial bleeding.

Significant Under treatment
- Unprotected 5,000,000 x 0.4 = 2,000,000 patients.

LAA closure with WATCHMAN has been well studied as currently the only device approved by FDA as an alternative to OAC:
- Overall efficacy non-inferior to warfarin, ischemic stroke ↑; hemorrhagic stroke ↓, mortality ↓.

Post FDA approval and CMS clarification on payment, appropriate case selection using a robust, shared, clinical decision making process should identify patients that will benefit.

OAC Patient

- **$$$$**
- **Did I take my medicine?**
- **Joints hurt! Need NSAID**
- **Out to dinner... what can I eat?**
- **Bronchitis... need antibiotic. Do I need to check INR?**
- **Did the cruise ship doctor know what Rivaroxaban is??**
- **What if I fall? If I fall, can the bleeding be stopped?**

LAA Closure

FREEDOM!!!!